
www.manaraa.com

J Grid Computing
https://doi.org/10.1007/s10723-019-09498-8

IoTEF: A Federated Edge-Cloud Architecture
for Fault-Tolerant IoT Applications

Asad Javed · Jérémy Robert ·Keijo Heljanko ·
Kary Främling

Received: 25 May 2019 / Accepted: 28 October 2019
© The Author(s) 2020

Abstract The evolution of Internet of Things (IoT)
technology has led to an increased emphasis on
edge computing for Cyber-Physical Systems (CPS),
in which applications rely on processing data closer
to the data sources, and sharing the results across
heterogeneous clusters. This has simplified the data
exchanges between IoT/CPS systems, the cloud, and
the edge for managing low latency, minimal band-
width, and fault-tolerant applications. Nonetheless,
many of these applications administer data collec-
tion on the edge and offer data analytic and storage

A. Javed (�) · K. Främling
Department of Computer Science, Aalto University,
Konemiehentie 2, Espoo, Finland
e-mail: asad.javed@aalto.fi

K. Främling
e-mail: kary.framling@umu.se

J. Robert
University of Luxembourg - Interdisciplinary Centre
For Security, Reliability and Trust, Luxembourg City,
Luxembourg
e-mail: jeremy.robert@uni.lu

K. Heljanko
Department of Computer Science, University of Helsinki,
Helsinki, Finland
e-mail: keijo.heljanko@helsinki.fi

K. Främling
Department of Computing Science, Umeå University,
Umeå, Sweden

capabilities in the cloud. This raises the problem of
separate software stacks between the edge and the
cloud with no unified fault-tolerant management, hin-
dering dynamic relocation of data processing. In such
systems, the data must also be preserved from being
corrupted or duplicated in the case of intermittent
long-distance network connectivity issues, malicious
harming of edge devices, or other hostile environ-
ments. Within this context, the contributions of this
paper are threefold: (i) to propose a new Internet
of Things Edge-Cloud Federation (IoTEF) architec-
ture for multi-cluster IoT applications by adapting our
earlier Cloud and Edge Fault-Tolerant IoT (CEFIoT)
layered design. We address the fault tolerance issue
by employing the Apache Kafka publish/subscribe
platform as the unified data replication solution. We
also deploy Kubernetes for fault-tolerant manage-
ment, combined with the federated scheme, offering a
single management interface and allowing automatic
reconfiguration of the data processing pipeline, (ii) to
formulate functional and non-functional requirements
of our proposed solution by comparing several IoT
architectures, and (iii) to implement a smart build-
ings use case of the ongoing Otaniemi3D project
as proof-of-concept for assessing IoTEF capabilities.
The experimental results conclude that the architec-
ture minimizes latency, saves network bandwidth,
and handles both hardware and network connectivity
based failures.

(2020) 18:57–80

/ Published online: 10 January 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-019-09498-8&domain=pdf
http://orcid.org/0000-0003-1829-6412
mailto:asad.javed@aalto.fi
mailto:kary.framling@umu.se
mailto:jeremy.robert@uni.lu
mailto:keijo.heljanko@helsinki.fi


www.manaraa.com

A. Javed et al.

Keywords Internet of Things · Distributed systems ·
Edge · Cloud · Microservice · Containers · Smart
buildings · Kubernetes · Kafka

1 Introduction

Ubiquitous technologies are increasingly prominent in
the field of Internet of Things (IoT), in particular with
the rise of edge computing. Such technologies have
also flourished in industrial environments, leading to
an increase of the data volume, variety, and veloc-
ity [1, 2]. As a consequence, Cyber-Physical Systems
(CPS) need to extend their computing and storage
capabilities by relying particularly on the cloud. How-
ever, data exchanges between IoT/CPS1 applications
and the cloud can suffer from weaknesses related to
latency, bandwidth (and its cost), security, and reli-
ability, for instance. To overcome such weaknesses,
most data are processed at the edge, closer to the
data sources. Edge computing, as a new comput-
ing concept, enables the envisaging of an intelligent
computing infrastructure for the Internet (of Things),
making physical objects smarter by connecting them
with the virtual world [3, 4], while working seamlessly
across heterogeneous clusters [5]. Such Edge-Cloud
data processing architectures often consist of five core
phases, as illustrated in Fig. 1. The data acquisition
phase collects real-time data from IoT devices, sen-
sors, actuators, and other information systems. The
data transmission and data processing phases, also
called the data management phase, enable either the
processing of data locally on the device before sending
them to the cloud, or directly transmitting them to the
cloud for further computation. Afterwards, the end-
users or information systems in general can consume
them in the data utilization phase. This utilization can
be in the form of a graphical user interface or various
responses of user-typed commands to perform desired
operations, such as controlling traffic signals or video
surveillance cameras. Meanwhile, in the data stor-
age phase, if needed, the application data are stored
permanently for further analysis. In many IoT appli-
cations, it is often necessary to move data processing
such as alarm generation from raw data streams to

1In this paper, IoT and CPS are used interchangeably

Fig. 1 An illustration of the data pipeline (five phases) in an
Edge-Cloud architecture

the edge, as it reduces network latency and saves a
large amount of network bandwidth. In some other
cases, the computing capabilities at the edge might
be insufficient, requiring data processing to be moved
towards the cloud back-end from the edge. This type
of data processing placement has to be selected at run-
time according to the available computing resources
on the edge- and cloud-side. Therefore, the following
challenges need to be tackled:

1. A common software stack is required for
processing, portability, and management ease,
enabling flexibility of data processing placement
across the clusters.

2. (Local) fault-tolerant systems, combined with
data replication, need to be implemented to pre-
serve the system state locally at the edge, espe-
cially in the case of a node failure or intermittent
long-distance network connectivity problems. In
fact, in a clustered system of many nodes in which
data are transported between edge and cloud, it
might be possible to permanently lose the data
items due to the malfunction of edge nodes.

3. Exactly-once data semantics [6] should be con-
sidered to avoid data duplication or corruption.
Indeed, since the processing stages acquire repli-
cated data from any available node, the data may

58



www.manaraa.com

IoTEF: A Federated Edge-Cloud Architecture for Fault-Tolerant IoT Applications

be repeatedly processed and delivered to another
node. It causes the system to repeat unreliable
actions, particularly for safety-critical environ-
ments, such as alarm generation or controlling a
turbine. In other cases, the data may be unpro-
cessed, leading the system to stall at any point.

4. A federated management system needs to be
implemented for handling several cloud and edge
clusters from a unified management interface irre-
spective of the physical hardware.

To address these challenges, this paper proposes the
Internet of Things Edge-Cloud Federation (IoTEF), a
highly dynamic and fault-tolerant architecture for IoT
applications, by adapting our earlier Cloud and Edge
Fault-Tolerant IoT (CEFIoT) design [7]. In contrast to
the CEFIoT, the new IoTEF architecture offers fed-
erated management interface for orchestrating several
heterogeneous clusters, supports transactional mes-
saging for exactly-once data delivery, and enables
fault-tolerant cluster computing on both the edge and
the cloud. In addition, it adopts the same state-of-the-
art cloud technologies as CEFIoT including Docker,
Kubernetes, and Apache Kafka, and also deploys
them for edge computing. The proposed architecture
is composed of four layers: (i) Application Isola-
tion, (ii) Data Transport, (iii) Distributed OS (Operat-
ing System), and (iv) Unified Federated Management
layer. Based on this layered design, the architecture
simplifies deployment and monitoring from a sin-
gle management interface, and allows data processing
placement on either the edge or the cloud without
source code modifications. This is enabled by using
the same lightweight container-based software stack
on both the cloud and the edge. Furthermore, the edge
also has capabilities to operate under hardware faults,
such as malicious harming of edge devices or harsh
environments. This requires fault tolerance using repli-
cation of data on several edge devices, reconfiguring
the data processing pipeline when hardware or net-
work failures occur, and capabilities to operate inde-
pendently on the edge in a degraded manner when the
edge is disconnected from the cloud back-end.

The Contributions of this Paper are Threefold: (i) We
propose a novel Edge-Cloud architecture, IoTEF,
based on the modular characteristics of microservices

and lightweight virtualization. The proposed archi-
tecture supports federated management, allows com-
puting on the edge, and simplifies fault tolerance of
distributed deployments across the clusters. (ii) We
compare several IoT architectures based on different
characteristics as well as formulate the functional and
non-functional requirements of our proposed archi-
tecture. (iii) The capabilities of IoTEF are assessed
by applying them to the smart buildings use case of
the ongoing Otaniemi3D project at Aalto University
campus in Otaniemi [8, 9].

The rest of the article is structured as follows.
Section 2 introduces the key-enabling cloud technolo-
gies combined with related work on the IoT architec-
tures and Edge-Cloud distributed systems. Section 3
defines functional and non-functional requirements as
well as proposes a federated Edge-Cloud architecture,
IoTEF, for multi-cluster IoT applications. Section 4
explains the smart buildings use case along with the
implementation and describes various data sensors.
In Section 5, our proposed architecture capabilities are
evaluated with results being presented in terms of fault
tolerance, latency, and throughput. Finally, Section 6
concludes this paper with the possible future direc-
tions.

2 Background: Concepts and Related Work

There has been a substantial growth in the develop-
ment of cloud technologies, communication mecha-
nisms, and other intelligent systems. However, one
fundamental principle emerges: the more benefits
these systems provide for our wellbeing, the higher
the potential for harm when they are unable to per-
form correctly. In such situations, fault tolerance is
the best guarantee as it has the capability of over-
coming physical, design, or human-machine interac-
tion faults [10–12]. A large number of fault-tolerant
techniques have been proposed in the literature that
are mainly intended for distributed systems [13–15].
Jhawar et al. [16] present a fault tolerance approach
for IoT applications, deployed in the cloud platform.
This solution allows users to specify the desired level
of fault tolerance through a dedicated service layer.
Another fault-tolerant mechanism for intelligent IoT
is implemented by Su et al. [17] which presents the

59



www.manaraa.com

A. Javed et al.

Fig. 2 High-level overview of Kubernetes cluster with one
master and an N number of worker nodes

design of a fail recovery mechanism in WuKong mid-
dleware. Unlike our proposed fault tolerance mech-
anism for multi-cluster environments, the aforemen-
tioned approaches provide fault tolerance for a single
cluster, and are capable of fail-over in a small network.

2.1 Theoretical Concepts

To accomplish a fault-tolerant system in the dis-
tributed IoT environment, container-based virtualiza-
tion has become the apparent choice [18]. Through
containers and the use of high-level languages and a
common software stack, the same analytics program
can be executed without source code modifications in
both the edge and the cloud. Docker has been widely
accepted as an open source container-based platform
to create and execute distributed applications [19].
Furthermore, Docker could be by far the most rea-
sonable contender for deploying microservices [20].
These are small, cohesive, and autonomous services
that enable the concept of modular independence to
structure an application as a collection of loosely cou-
pled services, each running on its own domain [20].
To manage a bundle of containers, Google developed
an open-source cluster management system called
Kubernetes,2 as the evolution of Borg [21]. With
Kubernetes, it is possible to deploy high availability
applications, scale and manage them during runtime,
and use application-specific resources while execu-
tion [22]. The two major alternatives to Kubernetes
are Docker Swarm [23] and Apache Mesos [24]. As
depicted in Fig. 2, a basic Kubernetes cluster is com-
posed of a single master and an N number of worker

2[Online]. Available: https://kubernetes.io/, accessed in May
2019

nodes. The Kubernetes master node consists of sev-
eral core components: The Kubelet agent registers
a node with the cluster, reports resource utilization,
and monitors PODs. A POD is a minimal deploy-
able unit capable of accommodating one or more
containers, and has a replica set feature for enabling
fault tolerance behavior; The Proxy service performs
request forwarding across a set of back-ends. Both
Kubelet and Proxy execute on each node including
the worker nodes; The API Server services REST
operations and provides interaction between all other
components; The Scheduler assigns workloads to spe-
cific worker nodes, whereas the controller manager
daemon watches the shared state of the cluster; A
separate client called kubectl connects users with the
cluster and assigns them control over the entire cluster;
Last but not least, the replication-based configuration
data storage is provided using etcd3 service which
notifies the system when events occur, such as data
creation or deletion. In addition to the previous cloud
technologies that create and manage containers, we
introduce Apache Kafka4 as a distributed, partitioned,
and replicated publish/subscribe (pub/sub) data pro-
cessing platform. It executes as a cluster on one or
more servers spanning multiple datacenters. Figure 3
depicts a basic Kafka cluster in which a stream of mes-
sages is divided into categories called topics. These
messages are published to topics using producer pro-
cesses. The published messages are then stored in the
set of servers called brokers. A separate set of con-
sumer processes are then subscribed to one or more
topics for pulling data from the brokers [25]. Addi-
tionally, Kafka uses Zookeeper service to provide
coordination and synchronization within the cluster
[26]. Other messaging systems, such as RabbitMQ
and MQTT, could be considered alternatives to Kafka
for data communication.

2.2 IoT Architectures and Edge-Cloud Distributed
Frameworks

Several studies have been conducted to describe
generic IoT architectures, which emphasize dis-
tributed Edge-Cloud computing and offer specifica-
tions including connectivity, scalability, and device

3[Online]. Available: https://coreos.com/etcd, accessed in May
2019
4[Online]. Available: https://kafka.apache.org/, accessed in May
2019

60

https://kubernetes.io/
https://coreos.com/etcd
https://kafka.apache.org/


www.manaraa.com

IoTEF: A Federated Edge-Cloud Architecture for Fault-Tolerant IoT Applications

Fig. 3 Example of Kafka cluster with three brokers

management [27–32]. Krco et al. [33] provide an
overview on designing IoT architecture in ETSI M2M,
FI-WARE, IoT6, and IoT-A projects combined with
the cloud computing capabilities. A Balena5 platform
has been developed which uses Docker-based man-
agement, instead of Kubernetes cluster orchestration,
for IoT devices. The purpose of this platform is to
introduce Docker containers for deploying and man-
aging isolated applications. Although the platform is
robust to sudden power failures and disk corruption,
it has no functionality for managing several embed-
ded devices as a single fault-tolerant cluster. There are
other well-known platforms, such as Azure IoT Suite,
Google Cloud IoT, and Amazon AWS, which deliver
fully integrated cloud services and allow many sys-
tems to easily connect, manage, and ingest IoT data
on a large scale. However, these platforms provide no
edge fault tolerance.

In addition to the previous IoT architectures,
Table 1 compares the IoTEF solution with CEFIoT
and other frameworks based on various IoT charac-
teristics. These characteristics are formalized in terms
of “Yes”, “No”, and “Partially” availability criteria in
which our proposed solution supports all the afore-
mentioned characteristics. As seen in Table 1, Schmid
et al. [5] propose an interoperable IoT architecture
called BIG IoT, enabling multi-platform applications
development and offering a cluster management solu-
tion. Similarly, another layered architecture called

5[Online]. Available: https://www.balena.io/, accessed in May
2019

DIAT has been proposed by Sarkar et al. [37]. This
approach tackles different aspects of IoT applica-
tions including interoperability, automation, scalabil-
ity, and security. Unlike IoTEF architecture, these
aforementioned approaches neither provide fault tol-
erance nor tackle computation placement on both
the cloud and edge clusters. Munir et al. [36] pro-
pose a fog centric IFCIoT architecture that offers
optimal performance, low latency, and high avail-
ability for IoT applications. Kelaidonis et al. [34]
develop a federated IoT architecture to enable ser-
vice provisioning in the distributed edge and cloud
platforms, offering low latency, automation, and the
unified management solution. However, unlike IoTEF
architecture, the fault tolerance capabilities are under-
studied in these approaches. To offer edge analytics
for large-scale IoT systems, Cheng et al. [38] propose
GeeLytics, which can perform real-time data process-
ing on both the edge and the cloud. This framework
utilizes Docker containers, combined with pub/sub
messaging, to achieve low latency analytics. Alam et
al. [35] propose a microservices-based architecture by
employing Docker virtualization and edge computing.
This approach, combined with application manage-
ment, offers fault tolerance and distributes application
logic across cloud, fog, and edge devices. Similarly,
Ramprasad et al. [41] describe an approach to stream
IoT sensors data for smart buildings in which data
analytics are distributed between the edge and the
cloud. In this approach, the authors adopt Apache
Kafka and Cassandra platforms for data streaming
and storage respectively. As compared to our pro-
posed architecture, the exactly-once data semantics
and local fault tolerance are understudied in the afore-
mentioned approaches. Chang et al. [39] propose a
hybrid edge-cloud architecture by leveraging edge
compute nodes to deliver low latency, bandwidth-
efficient, and resilient end-user services. Although this
solution provides fault tolerance and moves data pro-
cessing closer to the users, it does not support multi-
cluster application deployment. Another approach has
been introduced by Elias et al. [40] for image process-
ing, enabling automatic wildlife monitoring in remote
locations. In this approach, the authors perform neural
network training for animal recognition and imple-
ments fault-tolerant computation on both the edge and
the cloud. As compared to the IoTEF, this solution
does not offer exactly-once data delivery and is only
applied to wildlife monitoring.

61

https://www.balena.io/


www.manaraa.com

A. Javed et al.

Table 1 Comparison of IoTEF with other architectures

IoT Characteristics IoTEF CEFIoT [34] [35] [36] [37] [5] [38] [39] [40]

Data fault tolerance Yes Yes No Partially No No No No Yes Yes

Network fault tolerance Yes Yes No No No No No No Yes Yes

Node fault tolerance Yes Yes No Yes No No No No No Yes

High availability Yes Partially Yes Yes Yes Yes Yes No No Yes

Unified cluster management Yes No Yes No No No Yes Partially Yes No

Automation Partially No Yes Yes Yes Partially Yes No Yes Yes

Layered design Yes Yes No Yes Yes Yes No No No No

Exactly-once data delivery Yes No No No No No No No No No

Container virtualization Yes Yes No Yes No No No Yes Yes No

Multi-cluster deployments Yes No Yes Yes No No No No No Yes

3 The IoTEF Architecture

The IoTEF architecture is designed to offer a uni-
fied management system for both the cloud and edge
clusters in IoT systems. The proposed model, com-
bined with the modular characteristics of microser-
vices, simplifies both node and network fault toler-
ance, enables exactly-once data semantics, and over-
comes fail-over in a large multi-cluster environment.
The design also considers the limited resources avail-
able at the edge by employing lightweight containers
instead of using traditional virtual machines. In addi-
tion, separate clusters for the edge and the cloud allow
edge devices to operate independently when discon-
nected from the cloud back-end. Thus, the architecture
performs in a degraded mode even when cloud con-
nectivity is lost. The functional and non-functional

requirements for the IoTEF architecture are listed in
Table 2. These requirements are derived from the ear-
lier related work in various domains [42–44]. This
architecture is logically constructed from the under-
lying cloud technologies, which can also be deployed
for edge computing, and has four layers of abstraction:
(i) Application Isolation, (ii) Data Transport, (iii) Dis-
tributed OS, and (iv) Unified Management/Placement
layer as illustrated in Fig. 4. These layers are inte-
grated on top of each other, and together they enable
the required capabilities of IoTEF. Furthermore, our
proposed solution is sufficiently flexible to adapt to
various hostile real-world applications including smart
buildings, surveillance monitoring, and vehicle con-
trol system. The layered design of IoTEF ensures:
(i) application-level software migration and portabil-
ity between clusters, (ii) replication-based local data

Table 2 Functional and non-functional requirements for IoTEF

• Capability to process data exactly once and replicate them N-times in the cluster of an N nodes without any data
duplication.

• Ability to tolerate up to (N−1)
2 permanent failures (node failure or disk corruption) in the cluster of an N nodes without

interrupting the entire system, where N being an odd number greater than 1.

• Support for local data persistence on the edge when either a network fault occurs or a node malfunctions in the cluster of
an N nodes.

• Possible to continue data processing from other active nodes without interrupting the entire processing pipeline.

• Ability to deploy, manage, and monitor data as well as computation placement through a federated management system
irrespective of the underlying hardware.

• A system crash or network disconnection should not result in data loss or corruption.

• Able to minimize latency peaks and additional delays when processing stages are moved within and across the clusters.

• Capable of scaling the number of processing stages in order to handle more efficiently data computation.

62



www.manaraa.com

IoTEF: A Federated Edge-Cloud Architecture for Fault-Tolerant IoT Applications

Fig. 4 A bottom-up
layered architecture of
IoTEF: Green (solid-line)
modules correspond to the
IoTEF design, whereas blue
(dotted-line) modules are
related to CEFIoT

buffering with exactly-once data delivery within the
cluster, and (iii) fault-tolerant management for the
multi-cluster data processing pipeline.

3.1 Application Isolation Layer

The Application Isolation layer of IoTEF wraps pro-
cesses into separate containers and configures them
to operate as a single isolated application. This wrap-
ping is achieved by adopting Docker, which facilitates
convenient software deployment and also allows the
processing of data streams irrespective of the phys-
ical hardware. In the case of machines with differ-
ent architecture types, containers execute the same
application-level code (such as Java, Python, or Spark)
without source code modifications. Docker is chosen
for application isolation as it is by far the most adopted
development tool, offering software portability, low
CPU overhead, version control, and good network
performance. It also isolates several IoT applications
running on the same edge and cloud nodes from each
other. Figure 5 demonstrates a running example of an
IoT application on each IoTEF layer in which we have
four Processing Containers/Stages (PC): PC-1, PC-2,
PC-3, and PC-4. As can be seen in Fig. 5a, these pro-
cesses are executed sequentially on a single machine,
transporting data from source to destination.

3.2 Data Transport Layer

The Data Transport layer of IoTEF provides a pub/sub
messaging framework in which streams of data are

buffered and replicated across the cluster. This allows
the architecture to have logical data flow in the form
of containerized processes using pub/sub topics as a
transport medium. In this way, data processing can be
distributed efficiently, which gives us location flexi-
bility for computation to be placed either on the edge
or in the cloud. This organization of data processing
pipeline maintains network fault tolerance by allowing
data buffering locally at the edge, while Internet con-
nectivity is being reconfigured. We select the Apache
Kafka platform to enable the capabilities of this layer
as it solves the problem of data stream fault tolerance
by ensuring both online and offline messages con-
sumption. It provides a unified high-performance data
replication solution offering real-time processing, low
latency, and high data rates. Figure 5b demonstrates
an application viewpoint in which several dedicated
Kafka topics are used to buffer data streams. Thus,
allowing the data to be available at all times in the
cluster even while some processing stages are being
reconfigured. In addition, we use Kafka transactional
API to ensure exactly-once data semantics between
producers and consumers. This additional feature in
Kafka allows the processing of data only once within
a cluster. The current Kafka implementation does not
support transactions between multiple clusters. Hence,
in this paper, we limit exactly-once data delivery to a
single cluster, separate for both the edge and the cloud.

This layer is further extended to two scenarios in
Fig. 6. Both the edge- and cloud-side clusters con-
sist of three Kafka topics along with four PCs. In
Scenario-1, the edge-side cluster has two containers

63



www.manaraa.com

A. Javed et al.

Fig. 5 Running example of an IoT application on the IoTEF layered architecture; where PC is the Processing Container, ET is the
Edge Topic, CT is the Cloud Topic, EN is the Edge Node, and CN is the Cloud Node

in which PC-1 collects data from the data source, per-
forms pre-processing (e.g., filtering or compression),
and sends them to the local Edge Topic 1 (ET-1).
PC-2 then consumes these data from ET-1, performs
additional processing, and sends them to the cloud
on Cloud Topic 1 (CT-1). Similarly, the cloud-side
cluster contains PC-3 and PC-4 which consume data
from CT-1 and CT-2, respectively, process them fur-
ther, and deliver them to the destination. We enable a
transactional feature of Kafka in these PCs to ensure
exactly-once data consumption and delivery within
the cluster. On the other hand, Scenario-2 depicts
the behavior in which PC-3 is moved to the edge.

This shows the location flexibility for data process-
ing, since the design is based on software containers
and both sides have a similar Kafka cluster. This con-
figuration also provides benefits related to bandwidth
consumption and latency. Additionally, if there is a
network connectivity problem, the data will always be
available on the edge-side cluster. Once the Internet
outage has been resolved, for example, by using a sec-
ondary network connection, the architecture resumes
processing on both the edge and the cloud. In both
scenarios, the logical data flow is actively monitored
through Kafka which renders the pipeline active at all
times.

64



www.manaraa.com

IoTEF: A Federated Edge-Cloud Architecture for Fault-Tolerant IoT Applications

Fig. 6 Logical data processing pipeline

3.3 Distributed OS Layer

The Distributed OS layer of IoTEF is responsible
for distributing processing stages in the cluster and
assigning them to the physical nodes. This layer sim-
plifies the problem of node failures by rescheduling
failed processing stages on other available nodes, thus
providing node and network fault tolerance on the
hardware-level. In addition, it is capable of balanc-
ing the workload between different nodes. We use the
Kubernetes framework to orchestrate the placement of
processing stages, as it enables fault-tolerant manage-
ment and provides a high availability solution. One of
the key design ideas of Kubernetes is to have no sin-
gle point of failure. All configuration data is stored
in a replicated fashion, allowing Kubernetes to sur-
vive any single node failure in the cluster of three
nodes, for instance. Figure 5c illustrates data process-
ing placement for the same running application on
the Edge Node (EN) and Cloud Node (CN), which is
further extended to Fig. 7. As can be seen, the edge-
side cluster contains three nodes along with the local
Kafka cluster, whereas the cloud-side cluster has an
N number of nodes with another Kafka cluster. This
mapping provides a more detailed overview in which
the edge has three Kafka brokers, thus providing a 3-
way replication of data. Both sides have Kafka topics
that are accessible to each physical node. In this way,
if a node disconnects temporarily from either the edge-
or the cloud-side cluster, it becomes inactive. Conse-
quently, the system will not halt and the data can be
consumed from any other available node. Figure 7a
and b also demonstrate that (i) sensors and process-
ing can be on different edge devices, as long as they

have access to the same Kafka cluster, thus providing
computing location independence, (ii) the data pro-
cessing can be moved between the edge and cloud,
and (iii) data are always available in the cluster, pro-
cessed exactly-once, and buffered locally in the case
of an Internet outage. Once the network connectivity
has been resolved, the cluster continues to transmit
data from local edge topic to the cloud. Figure 7b is
further extended to Scenario-3 in Fig. 7c in which EN-
3 becomes unresponsive on the edge-side cluster. As
a consequence, Kubernetes reschedules PC-3 on EN-
1. Since the data reside on the pub/sub topic, which
is replicated on all the nodes, PC-3 consumes the data
from ET-2 and sends them to CT-2 on the cloud-side
cluster from EN-1. In this way, the architecture han-
dles node failure by maintaining the correct system
state in which the physical data flow is changed; nev-
ertheless, the logical data flow remains the same. This
shows a fault tolerance capability that is fully trans-
parent to the application programmer, and also allows
for dynamic relocation of data processing.

3.4 Unified Federated Management Layer

The Unified Federated Management layer of IoTEF
provides a mechanism for handling several cloud and
edge clusters from a single management interface.
It also has an ability to monitor the data processing
pipeline, ensuring that the same application deploy-
ment exists across multiple clusters. This layer has
a separate control plane for creating and deploying
containerized applications. In addition, the layer is
capable of making control decisions for clusters and
adding more clusters to the federation system. We

65



www.manaraa.com

A. Javed et al.

Fig. 7 Placement of processing stages; where EB is the Edge Broker, CB is the Cloud Broker, EN is the Edge Node, and CN is the
Cloud Node

66



www.manaraa.com

IoTEF: A Federated Edge-Cloud Architecture for Fault-Tolerant IoT Applications

adopt the Kubernetes Federation scheme to implement
the needed functionality. This federated management
overcomes both hardware and network connectivity
based failures by allowing on-the-fly automatic recon-
figuration of the processing pipeline. As illustrated
in Fig. 5d, the federation control plane manages two
clusters: One on the edge and one on the cloud. Ini-
tially, this layer advises the Distributed OS layer to
configure data communication stacks on the cloud and
edge clusters through Kafka. It then packages pro-
cessing stages of an IoT application into containers
and deploys them in the multi-cluster environment.
Figure 8 illustrates the six steps that are performed on
our running application:

1. The federation layer employs Docker containers
to configure a 3-node (three brokers) Kafka clus-
ter. These containers with Kafka broker configu-
ration in them are executed on each edge node as
Kubernetes PODs (EB-1, EB-2, and EB-3), which
are deployed through YAML [45] descriptor file.

2. Next, another Kafka cluster with three bro-
kers is configured on the cloud by executing

three Docker containers (CB-1, CB-2, and CB-
3), which are also deployed as Kubernetes PODs
through YAML configuration file.

3. The data processing of an IoT application is
divided into PCs by placing the application code
inside separate containers.

4. Once the data communication pipeline has been
configured, the layer then places these PCs on
the edge nodes, depending on the processing type
(e.g., filtering or data compression), hardware
architecture, and other resource requirements.

5. Similarly, in the case of excessive data process-
ing (e.g., training of neural networks or prediction
tasks) and data storage, the PCs can also be placed
on the cloud nodes.

6. Finally, the layer manages and monitors the entire
deployment through the Kubernetes high avail-
ability mechanism. In the scenario in which either
the edge or cloud nodes disconnect from the sys-
tem, PC will reschedule on another active node.

These steps are realized as a single application
deployment inside multi-cluster environments through

Fig. 8 Steps taken by the federated management layer

67



www.manaraa.com

A. Javed et al.

the federation control interface. Based on the afore-
mentioned steps, the layer can perform deployment
decisions for each node and have control over the
entire federation. Therefore, our architecture becomes
fully fault-tolerant in the sense that the failure of any
single computing node on either the edge or the cloud
will not disrupt the data processing pipeline.

4 Case Study: Smart Buildings

To evaluate the capabilities of our proposed architec-
ture, we consider a smart buildings use case of the
ongoing Otaniemi3D project. The proof-of-concept
for Otaniemi3D has earlier been developed by the
Aalto University researchers [8, 9], where Otaniemi
is the name of university campus and 3D represents

the dimensions in which IoT data are presented. Smart
buildings are generally equipped with a Building
Management System (BMS) that incorporates smart
interconnected technologies to perform intelligent and
responsive operations, such as fault detection, make
automatic adjustments, alert management staff, and
monitor performance. Such a BMS often performs
data processing, data storage, and control decisions
in the cloud servers. This requires longer time to
access processed data and consumes a large amount
of network bandwidth between the cloud and BMS.
In many cases, these data may be returned to the
BMS for immediate analysis, for example, control-
ling a ventilation system, fire alarms, or other data
visualization purposes. However, in such situations,
the BMS can be physically damaged by some mali-
cious activity or the network connectivity in some of

Fig. 9 An implementation model with the edge and cloud
clusters, managed from the federation interface; where FL is
the FLannel networking, EB is the Edge Broker, CB is the

Cloud Broker, and PC is the Processing Container. HAProxy is
deployed on worker node 1 for both the clusters

68



www.manaraa.com

IoTEF: A Federated Edge-Cloud Architecture for Fault-Tolerant IoT Applications

Table 3 Specifications of hardware/software tools

Node type OS Docker Kubernetes Kafka No. of nodes Kafka brokers etcd servers

Edge Raspberry Pi 2 Model B+ Raspbian 9.4 v18.09 v1.9.7 v2.0 5 5 3

Cloud Ubuntu VM Ubuntu 16.04.5 v18.09 v1.9.7 v2.0 5 5 3

Federation Linux Server Ubuntu 16.04.5 v17.12 v1.13.3 − 1 − 1

the processing nodes may be temporarily cut off. This
requires a unified fault-tolerant data processing capa-
bility for performing optimal deployment decisions at
runtime on either the edge or the cloud. The system
must also preserve and buffer data streams locally at
the edge, especially in the case of network connectiv-
ity problems or malicious harming of edge or cloud
nodes. One of the solutions is to process real-time data
at the logical extremes of the network, that is, closer
to the data sources of BMS, managed from a sin-
gle federation system. Within this context, Section 4.1
explains our demonstrator system for the smart build-
ings use case and lists the hardware/software speci-
fications. Section 4.2 describes different data sensors
for obtaining real-time data.

4.1 Use Case Implementation with IoTEF

We employ the IoTEF layered design in the smart
buildings use case to address all the aforementioned
issues. A demonstrator system has been implemented
in the Aalto University lab, which will be deployed in
campus-wide area of the Otaniemi3D project. Figure 9
shows a running implementation of the selected use
case in which the Application Isolation layer is real-
ized in the form of all encapsulated processes, exe-
cuting inside Docker containers. If needed, other
application-specific processes, such as data collec-
tion and data compression, can also be encapsulated
in this layer. The Distributed OS layer is logically
observed by adopting the Kubernetes high availability
framework. As seen in Fig. 9, the processes in green
solid-line containers (apiserver, scheduler, controller,
etcd, proxy, kubelet) configure the Kubernetes clus-
ter. These components have previously been described
in Section 2.1. Similarly, the Data Transport layer is
modelled by configuring the Kafka pub/sub cluster for
both the edge and cloud (processes in blue solid-line
containers: EB-1 to EB-5 and CB-1 to CB-5). The
federation control plane in Fig. 9 is the part of Uni-
fied Federated Management layer deployed through

the Kubernetes federation scheme. All the IoTEF lay-
ers work together to enable the required capabilities
in this use case. In our implementation, the commu-
nication between containers is provided by a Flan-
nel6 overlay network. It runs a small binary agent
called “flanneld” on each node, which is responsible
for allocating a unique subnet lease (/24 by default)
out of a larger, preconfigured address space. Flan-
nel directly utilizes either the Kubernetes API or etcd
to store the network configuration, allocated subnets,
and any other system data. Further, Table 3 lists the
system parameters as well as specifications of hard-
ware/software tools. Our implementation consists of
three sub-systems:

1. Edge cluster: The edge-side cluster is composed
of five Raspberry Pi (RPi) nodes. We use RPi
2 with 1GB RAM and a 900MHz 4-core ARM
Cortex-A7 CPU. Each RPi executes Kafka and
Kubernetes inside Docker containers, ensuring the
same software stack which communicates through
Kafka and are managed by Kubernetes. We use
kubeadm tool to spread Kubernetes on the edge
nodes. It performs the actions necessary to con-
figure a minimum viable cluster in a user-friendly
manner. This tool bootstraps the initial Kuber-
netes control-plane by executing kubeadm init
command on all the three master nodes. We pro-
vide our own “config.yaml” file as an input to this
command for setting up highly-available cluster.
This file mainly consists of configuration parame-
ters including etcd server endpoints, IP addresses
of API server and load balancer, and network
subnet for Flannel. As a result, Kubernetes initi-
ates all the required components on three separate
master nodes. Similarly, we execute kubeadm join
on the other two worker nodes to join the cluster.
The three master nodes of kubernetes, combined

6[Online]. Available: https://coreos.com/flannel/, accessed in
May 2019

69

https://coreos.com/flannel/


www.manaraa.com

A. Javed et al.

with a 3-node etcd cluster and leader election fea-
ture, offers a single node fault tolerance. Thus,
if one master fails, another node begins to oper-
ate as a new master node. As seen in Fig. 9, all
five edge nodes are connected through HAProxy
load balancer, which is deployed on worker 1
node, enabling high availability by balancing API
requests between the master nodes. More mas-
ter and worker nodes can be integrated with the
cluster. In addition, a 5-node Kafka cluster is
also configured by executing one Kafka broker on
each edge node, thus enabling data fault tolerance
while tolerating two Kafka nodes failure.

2. Cloud cluster: We consider five Virtual Machines
(VMs) for the cloud-side cluster in which each
VM has 8GB RAM and a 2.40GHz Intel(R)
dual core CPU. As seen in Fig. 9, this cluster
also consists of three Kubernetes master and two
worker nodes that are initialized through kubeadm
tool. The implementation is similar to the edge-
side cluster in which each VM runs Kafka and
Kubernetes inside Docker containers, providing
the same software stack. Thus, tolerating a single
master node failure and two Kafka nodes failure
in the cluster of five nodes.

3. Federation: The federation control plane exe-
cutes on a separate server containing 16GB RAM

and a 3.20GHz Intel(R) 4-core CPU. Both the
cloud and edge clusters are added to this feder-
ation system, which are then managed from the
unified control interface. Although we implement
the federation plane on a single node and assume
that it is available at all times, it can also be con-
figured as a fault-tolerant system similar to the
edge and cloud clusters.

4.2 Data Sensors for Smart Buildings

In our use case, we collect three types of sensor
data from each building: (i) the images with motion
detected in them are captured from the camera sensors,
(ii) burglar alarm data are also recorded from each of
these images, and (iii) the ventilation system data for
each building are collected from 137 temperature, 96
CO2, and 55 central heating unit sensors. Figure 10
illustrates the three aforementioned sensors along with
the map of Otaniemi area in which five RPi boards
correspond to five separate buildings of the university
campus. Although a single RPi sufficiently handles a
smaller amount of data for several buildings, it may be
unable to manage the data of all five buildings and per-
form excessive data computation on them. To tackle
such situations, one RPi (edge node) is dedicated to
process and buffer the real-time data for each building.

Fig. 10 The map of Otaniemi area with five RPi and three types of sensor data for each building

70



www.manaraa.com

IoTEF: A Federated Edge-Cloud Architecture for Fault-Tolerant IoT Applications

Table 4 Summary of various latency notations; where SP is the Special Process and PC is the Processing Container

Symbol Description Definition

pe Produce to edge Send single image from PC to edge cluster

pc Produce to cloud Send single image from SP-1 to cloud cluster

ce Consume from edge Consume single image from edge topic inside edge cluster

cc Consume from cloud Consume single image from edge topic inside cloud cluster

�p Latency of producing data on edge Time taken to send a single image from camera sensor to the local edge topic

�ce Latency of consuming data on edge Time taken to retrieve a single image on edge from the edge topic

�cc Latency of consuming data on cloud Time taken to retrieve a single image in the cloud from the edge topic

�pc Latency of producing data on cloud Time taken to send a single image to the cloud topic after processing in SP-1

�proc Latency of data processing Time taken to process a single image on either the edge or the cloud

de Delay in data processing on edge Time taken to start another container on the edge after previous one fails

�m Latency of moving data compute Time taken to move the data processing container from edge to cloud

5 Performance Evaluation and Discussions

To assess the performance of IoTEF architecture
implemented in the smart buildings use case, we con-
sider the three aforementioned sensors and measure
latency, throughput, and fault tolerance values. All the
data are processed, replicated, and transmitted to the
cloud for fault tolerance purposes, permanent stor-
age, and further analytic. However, the results are
only plotted for image data as the camera sensors
generate a large amount of data and corresponds to
the worst case in terms of our performance metrics.
Other sensor types will lead to similar or better results.
Table 4 defines the notations that are used for latency
measurements on both the edge- and the cloud-side
clusters. Likewise, Fig. 11 illustrates real-time sce-
narios in which a single local Processing Container
(PC) runs on each RPi. These PCs collect images in
jpeg format from the camera sensors attached to each
RPi (each building), convert them into JSON string
using Base64 encoder, and send them to the local
Kafka cluster. The entire process in PC is measured
as latency �p for each image. A Special Process (SP-
1), also termed as Consume-Produce process, then
consumes these images, processes them by apply-
ing image compression, and sends them to the cloud
Kafka cluster. The retrieval of images in SP-1 from
the edge cluster is measured as latency �ce and �cc,
depending on the SP-1 location. Similarly, the same
is the case for transmitting images to the cloud topic
from SP-1 with latency �pc. We consider the image
compression technique in SP-1 for processing as it is
one of the approaches to decrease the payload on the

network and simulate another processing time latency
�proc. In fact, we can also reduce the amount of stor-
age space for each image, thereby, buffering many of
them inside the edge and cloud topics. Furthermore,
the producer and consumer processes in Fig. 11 enable
Kafka transactions API in Java to process images by
initializing the transactions and commit them after the
operation has been completed. Both the PC and SP-
1 are created using the replication-based workload of
Kubernetes and monitored through Kubernetes feder-
ation, ensuring the availability of these processes at
all times. This SP-1 is also able to execute on any
of the five edge or cloud nodes without source code
modifications.

5.1 Performance in Terms of Latency

We measure various latency values and throughput
by considering the scenarios illustrated in Fig. 11.
The experimental results for processing image data
on either the edge or the cloud are presented in
Fig. 12. These graphs represent the latency distri-
bution providing image latency as “latency” bins on
the horizontal axis, and the frequency as number
of images obtained in each bin on the vertical axis
for three different image sizes. We consider images
with dimensions 640x480, 1024x768, and 1280x1024
that occupy around 40kB, 87kB, and 146kB respec-
tively. As seen in Fig. 12g, when the image size
increases, the latency �p also increases since more
time is required to prepare higher resolution images
for transmission. As a consequence, a smaller number
of images is sent to the local edge cluster. Compared

71



www.manaraa.com

A. Javed et al.

(c) (d)

(b)(a)

Fig. 11 Real-case scenarios for assessing fault tolerance and measuring latency values

to 1280x1024 image in which the highest bin (around
180 images) has 40ms/image latency, 640x480 and
1024x768 images show better response at their high-
est bins. Thus, around 200 images of size 640x480
and 220 images of size 1024x768 are sent to the
edge cluster with �p of 15ms/image and 25ms/image

respectively. Figure 12a and b show the effect of data
processing time (image compression in this case) on
the cloud and edge respectively. As compared to the
cloud-side cluster which has more processing power,
there is a significant increase in �proc values on the
edge-side cluster. For instance, with the image of

72



www.manaraa.com

IoTEF: A Federated Edge-Cloud Architecture for Fault-Tolerant IoT Applications

(a) (b)

(d)(c)

(e) (f)

(g)

Fig. 12 Latency measurements distribution for three different image sizes (note that frequency is the number of cases/images in each
“latency” bins obtained in our experiment)

73



www.manaraa.com

A. Javed et al.

(a) Throughput for Kafka traffic (b) Throughput for Kubernetes and etcd traffic

Fig. 13 Throughput in the edge cluster

size 1024x768, around 600 images are processed on
the cloud with �proc of 22ms/image. However, the
edge only processes around 70 of these images with
290ms/image �proc latency. When images are sent to
the cloud for further processing, the �pc values are rel-
atively low for both the cloud and edge, as shown in
Fig. 12c and d respectively. In contrast to Fig. 12d,
the �pc values in Fig. 12c are even more smaller when
data transmission to cloud topic (from SP-1) happens
on the cloud. This is because the load is at minimum
and no other Kafka producers or consumers run on the
cloud-side cluster. Thus, around 1200, 1500, and 1800
images of all three sizes are sent to the cloud topic
with 0.75ms/image, 1.0ms/image, and 1.25ms/image

�pc bins respectively. On the other hand, if SP-1 exe-
cutes on the edge in Fig. 12d, a smaller number of
images (around 790, 800, and 650 for all three image
sizes) is sent to the cloud with �pc bins of 3ms/image,
5ms/image, and 7ms/image respectively. This is due
to the limited amount of computing resources avail-
able at the edge and each RPi already has a single
local Kafka producer active at all times, causing a
smaller amount of delay. Similarly, the image data
consumption (in SP-1) on the edge-side cluster is
shown in Fig. 12f in which the �ce values are relatively
higher than the �cc values on the cloud-side cluster
(see Fig. 12e). As an example, with the image of size
1024x768, around 1600 images with 2ms/image �cc

(a) Throughput for Kafka traffic traffic(b) Throughput for Kubernetes and etcd

Fig. 14 Throughput in the cloud cluster

74



www.manaraa.com

IoTEF: A Federated Edge-Cloud Architecture for Fault-Tolerant IoT Applications

and 780 images with 19ms/image �ce are consumed on
the cloud and edge respectively. Indeed, in this con-
sumption case, the edge is able to retrieve, process,
and send many images to the cloud with low latency,
thus minimizing the network bandwidth. Further, in
the scenario in which SP-1 fails on RPi-4 and resumes
processing on RPi-3 (see Fig. 11c), we measure the
delay de of 4 seconds. Similarly, the latency �m of
moving data processing from RPi-4 to CN-3 node in
Fig. 11d is noticed to be around 6 seconds.

In addition to the latency measurements, Fig. 13
and Fig. 14, respectively, show the throughput in the
edge- and cloud-side clusters. These graphs represent
the network traffic for Kafka and Kubernetes provid-
ing throughput in bytes/s over the period of time. We
execute tcpdump on each node to capture and filter the
network traffic. As seen in Fig. 13a, the Kafka traffic
begins at 100s. It increases gradually since the produc-
ers and consumers start to produce, replicate, and con-
sume data in the edge cluster. The network traffic is at
maximum (1.5x106 bytes/s) around 125s. At this time,
all the requests are sent to the Kafka topic partition
leader which resides at rpi3-m3 node. Once the data
processing pipeline has been fully up and running, the
throughput starts to increase after 180s for every edge
node. On the other hand, Fig. 13b shows the admin-
istration traffic including Kubernetes and etcd for all
five nodes. On average, this traffic represents around
10% of the overhead. The throughput for rpi1-m1
node increases significantly to around 350000 bytes/s
at 170s. This is due to the etcd leader that executes
on rpi1-m1 node and synchronizes the entire edge

cluster state with the Kafka data processing pipeline.
Similarly, as illustrated in Fig. 14a, the throughput in
the cloud cluster is at maximum for cn4-w1 node,
since SP-1 executes on this cloud node. At around
190s, this SP-1 begins to consume image data from
the edge Kafka cluster and the throughput increases
to around 40000 bytes/s. The administration traffic
including Kubernetes and etcd on the cloud is also
plotted in Fig. 14b. On average, this traffic repre-
sents around 47% of the overhead as compared to the
Kafka traffic in Fig. 14a. The throughput in Fig. 14b
significantly increases to 200000 bytes/s at around
190s and 200s for both cn2-m2 and cn3-m3 respec-
tively. This is due to the initiation of SP-1 container
on cn4-w1 node at around 190s which forces Kuber-
netes and etcd to synchronize the cluster state with
other nodes. Overall, compared to the Kafka through-
put in the edge cluster, the cloud cluster has relatively
less throughput for all the nodes.

5.2 Fault Tolerance Assessment

We consider iptables utility as an administration tool
for testing fault tolerance behaviour. This tool allows
to configure, maintain, and inspect a set of IP packet
rules for the network. Such rules enable the system to
accept or reject specific network traffic. The following
command is used to disable network connectivity:

iptables − A INPUT − j DROP

As seen in Fig. 15a, this command appends a DROP
rule to the end of an INPUT table. It is executed on one of

(a) (b)

Fig. 15 Screenshots for fault tolerance assessment on the edge cluster

75



www.manaraa.com

A. Javed et al.

Table 5 Fault tolerance behavior on the edge-side cluster: �means active, × means inactive, M corresponds to the Kubernetes master
node, W corresponds to worker node

Case M-1 M-2 M-3 W-1 W-2 Observations

1 � � � � � The default condition (best-case scenario) in which all nodes are up
and running.

2 × � � � � The cluster tolerates one node failure. Other master nodes handle
the API requests.

3 × × � � � The data still process on other active nodes. However, the cluster is
unable to handle new requests.

4 � � � � × No effect on the high availability mechanism. The edge cluster only
looses one computing node.

5 � � � × × No effect on the high availability mechanism. However, the cluster
reduces to three nodes.

6 � × � � × The cluster continues to operate since two master nodes are still
available for handling API requests.

7 × × × � � The worst-case scenario in which we have no fault tolerance and
no control over the cluster.

the RPi nodes and the DROP rule is highlighted with
red box. Besides, Table 5 lists the observations for
seven different cases in which the network connectiv-
ity between edge nodes is temporarily cut-off through
iptables. These cases are obtained by running kubectl
on the federated management server, and outputs are
displayed in the form of Ready and NotReady sta-
tus, as demonstrated in Fig. 15b. For each case, a
scenario of Fig. 11a is considered and the results of
CPU and memory usage for the edge cluster are col-
lected in Fig. 16. Since both the edge and cloud have
similar fault tolerance implementation, the behaviour
is only analyzed for the edge-side cluster. The CPU
usage graphs in Fig. 16 provide the time in MM:SS
format on the horizontal axis and the aggregated CPU
cores, which are dedicated for the entire Kubernetes
edge cluster, on the vertical axis. We have in total 20
CPU cores in which each RPi has 4 cores. Similarly,
the memory usage graphs provide the similar time
duration on the horizontal axis and the aggregated
memory in-use (out of total 5 Gbytes) of the edge clus-
ter on the vertical axis. These results are plotted on the
Kubernetes Dashboard (web-based UI) through Heap-
ster metrics tool, which enable cluster monitoring and
performance analysis for Kubernetes. Heapster col-
lects various signals, such as compute resource usage
and lifecycle events, and exports them via REST end-
points to the dashboard. As can be seen, Fig. 16a and
b show the normal behaviour when all five edge nodes
are active. In the beginning (at around 20:58), the
nodes initialize data communication pipeline through
Kafka cluster, thus increasing CPU usage from 5.0

cores to around 7.2 cores (at time 21:00). This value
shows the active cores for our use case scenario. Sim-
ilarly, the cluster occupies around 4.19 Gbytes out of
5 Gbytes. When one master node fails, the CPU and
memory usage decreases to around 6 cores and 2.8
Gbytes (at time 21:12) in Fig. 16c and d respectively.
Figure 16e and f show the behaviour when two mas-
ter nodes become inactive. Both the CPU and memory
usage decrease significantly to around 3 cores and 1.9
Gbytes respectively. Moreover, the cluster is unable to
handle new requests as our implementation tolerates a
single master node failure. Similarly, Fig. 16g–j cor-
respond to the cases when one and two worker nodes
become inactive. The CPU and memory usage slightly
reduce to 3.5 cores and 2.25 Gbytes, respectively, for a
short interval (from time 15:25 - 15:30) in Fig. 16i and
j. During that time, the two nodes are unavailable for
processing; nevertheless, other three nodes are active.
The cluster continues to perform data processing tasks
accordingly by self-adapting itself to the failures. The
same is the case in Fig. 16k and l in which one mas-
ter and one worker node become inactive at the time
duration from 18:59 - 19:07. The CPU usage slightly
decreases from 7 cores to around 5.25 cores; never-
theless, the cluster continues to operate and manages
data processing pipeline. Overall, disconnecting two
physical nodes from the cluster will not disrupt the
data processing pipeline. The architecture self-adapts
and reconfigures around two nodes failure (including
at most one master node).

Based on the experimental results, it has been
observed that the proposed Edge-Cloud architecture,

76



www.manaraa.com

IoTEF: A Federated Edge-Cloud Architecture for Fault-Tolerant IoT Applications

(a) (b)

(d)(c)

(e)

(g)

(i)

(k) (l)

(j)

(h)

(f)

Fig. 16 CPU and Memory usage for fault tolerance cases.
CPU (cores): the aggregated sum of active cores for the
entire Kubernetes edge cluster, Memory (bytes): the aggregated

memory in-use of the edge cluster, and Time: the time dura-
tion in MM:SS (minutes:seconds) for analyzing fault-tolerant
behaviour

77



www.manaraa.com

A. Javed et al.

IoTEF, is capable of minimizing latency and con-
suming a smaller amount of network bandwidth by
processing data items closer to the data sources. In
addition, unified implementation for both the edge
and the cloud, combined with federated management,
enables multi-cluster fault tolerance and high avail-
ability in the IoT/CPS systems. Hence, it can handle
hardware-based failures on the Distributed OS layer
and network connectivity based failures on the Data
Transport layer.

6 Conclusion

We conclude this paper in the following two sections.
Section 6.1 describes the summary and implications of
this work. Section 6.2 explains the limitations of
our proposed solution along with the possible future
directions.

6.1 Summary and Implications

This paper proposes a federated Edge-Cloud archi-
tecture, IoTEF, for IoT/CPS applications by adapt-
ing our earlier CEFIoT layered design. It uses the
same state-of-the-art cloud technologies as CEFIoT
including Docker, Kubernetes, and Apache Kafka,
and also deploys them for edge computing. This new
architecture has four layers: (i) Application Isola-
tion, (ii) Data Transport, (iii) Distributed OS, and
(iv) Unified Federated Management layer. Based on
this layered design, the IoTEF architecture offers: (i) a
common software stack for both the edge and the
cloud; (ii) replication-based local fault tolerance on
the edge devices to overcome nodes failure, network
connectivity problems, or other harsh environments;
(iii) data processing closer to the data sources for
minimizing latency and consuming a smaller amount
of network bandwidth; (iv) exactly-once data deliv-
ery for environments in which data may be pro-
cessed more than once or not processed at all; and
(v) a unified federated management for managing
several clusters from a single management interface.
We evaluate the capabilities of IoTEF by applying
them to the smart buildings use case of the ongo-
ing Otaniemi3D project at the Aalto University cam-
pus in Otaniemi. A demonstrator system has been
implemented for both the edge and the cloud in
which the data fault tolerance is tackled by employ-

ing the Apache Kafka publish/subscribe platform. We
also deploy Kubernetes framework, combined with
its federated scheme, offering a single management
interface and enabling unified fault-tolerant manage-
ment. Experimental results have validated the use case
implementation in which our solution is capable of
minimizing latency, reducing network bandwidth, and
handling both node and network failures.

Furthermore, our proposed solution can be config-
ured on the edge- and cloud-side clusters in which
each computing node is able to execute Linux OS
and other required softwares. However, many edge
devices do not support these technologies. In such
cases, we can integrate these edge nodes with another
small cost-efficient processing module which supports
Linux clone. Thus, making them compatible for our
proposed infrastructure. The IoTEF solution can then
become technologically-viable for such systems.

6.2 Limitations and Future Work

We implement and evaluate our proposed solution
on the edge devices that are connected through LAN
network. In the case of mobile edge devices which
move between different networks, the IP addresses
will change based on the new network. As a conse-
quence, the entire system must reconfigure itself to
resume data communication. The other edge compo-
nents can still be able to communicate with the cluster
for data publication and consumption. To achieve
such mobile systems, our framework should imple-
ment a service enabling to update the whitelist of
our nodes. However, there could be many limitations
to such systems. As the devices move to a new net-
work, the firewall settings need to be updated to open
specific ports for communication. Moreover, the data
processing latency, throughput, and delay values are
also changed based on the location, network, or other
parameters. In addition to the previous limitations,
security at the edge-level is one of the main concerns
in which the system should identify whether it is the
same device that has been moved from one network
to another. Our future work will address the imple-
mentation of IoTEF architecture on these mobile use
cases along with the edge-level security. This security
mechanism is particularly related to the device iden-
tification and data encryption on resource-constraint
devices, ensuring secure data communication. Fur-
ther, the architecture will be enhanced by enabling

78



www.manaraa.com

IoTEF: A Federated Edge-Cloud Architecture for Fault-Tolerant IoT Applications

Kafka transactional messaging (i.e., exactly-once data
delivery) between two or more clusters.

Acknowledgements This research is supported by the EUs
Horizon 2020 research and innovation program (grant 688203)
and Academy of Finland (Open Messaging Interface; grant
296096, APTV; grant 277522, and SINGPRO; grant 313469).
The authors would like to thank Jaakko Kotimäki and Markus
Murhu from the CS IT department of Aalto University for their
help in the experiments setup.

Funding Information Open access funding provided by
Aalto University.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unre-
stricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons license,
and indicate if changes were made.

References

1. Choi, M., Park, J., Jeong, Y.-S.: Mobile cloud computing
framework for a pervasive and ubiquitous environment. J.
Supercomput. 64, 331–356 (2013)

2. Atzori, L., Iera, A., Morabito, G.: The Internet of Things: a
survey. Comput. Netw. 54(15), 2787–2805 (2010)

3. Främling, K., Holmström, J., Ala-Risku, T., Kärkkäinen,
M.: Product agents for handling information about physi-
cal objects, WorkingPaper 153/03. Helsinki University of
Technology, Laboratory of Information Processing Science
(2003)

4. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing:
vision and challenges. IEEE IoT J. 3(5), 637–646 (2016)

5. Schmid, S., Bröring, A., Kramer, D., Käbisch, S., Zappa,
A., Lorenz, M., Wang, Y., Rausch, A., Gioppo, L.: An
architecture for interoperable IoT ecosystems. In: Inter-
operability and Open-Source Solutions for the Internet of
Things - Second International Workshop, InterOSS@IoT
2016, Held in Conjunction with IoT 2016, Stuttgart, Ger-
many, November 7, 2016, Invited Papers, pp. 39–55 (2016)

6. Huang, Y., Garcia-Molina, H.: Exactly-once semantics in
a replicated messaging system. In: Proceedings of the 17th
International Conference on Data Engineering, April 2-6,
2001, Heidelberg, Germany, pp. 3–12 (2001)

7. Javed, A., Heljanko, K., Buda, A., Främling, K.: CEFIoT:
a fault-tolerant IoT architecture for edge and cloud. In: 4th
IEEE World Forum on Internet of Things, WF-Iot 2018,
Singapore, February 5-8, 2018, pp. 813–818 (2018)

8. Buda, A., Kinnunen, T., Dave, B., Främling, K.: Develop-
ing a campus wide building information system based on
open standards. In: Lean and Computing in Construction
Congress (LC3): Volume I - Proceedings of the Joint

Conference on Computing in Construction (JC3), July 4-7,
Heraklion, Greece, pp. 733–740 (2017)

9. Dave, B., Buda, A., Nurminen, A., Främling, K.: A frame-
work for integrating BIM and IoT through open standards.
Autom. Constr. 95, 35–45 (2018)

10. Avizienis, A.: Toward systematic design of fault-tolerant
systems. IEEE Computer 30(4), 51–58 (1997)

11. Mei, J., Li, K., Zhou, X., Li, K.: Fault-tolerant dynamic
rescheduling for heterogeneous computing systems. J. Grid
Comput. 13(4), 507–525 (2015)

12. Dean, J., Barroso, L.A.: The tail at scale. Commun. ACM
56(2), 74–80 (2013)

13. Pradhan, D.K., Reddy, S.M.: A Fault-Tolerant commu-
nication architecture for distributed systems, IEEE trans,
journal=Computers, 31(9), 863–870 (1982)

14. Laprie, J., Arlat, J., Béounes, C., Kanoun, K.: Defini-
tion and analysis of hardware- and software-fault-tolerant
architectures. IEEE Computer 23(7), 39–51 (1990)

15. Hwang, S., Kesselman, C.: A flexible framework for
fault tolerance in the grid. J. Grid Comput. 1(3), 251–272
(2003)

16. Jhawar, R., Piuri, V., Santambrogio, M.D.: Fault tolerance
management in cloud computing: a system-level perspec-
tive. IEEE Syst. J. 7(2), 288–297 (2013)

17. Su, P.H., Shih, C., Hsu, J.Y., Lin, K., Wang, Y.: Decen-
tralized fault tolerance mechanism for intelligent IoT/M2M
middleware. In: IEEE World Forum on Internet of Things,
WF-Iot 2014, Seoul, South Korea, March 6-8, 2014, pp. 45–
50 (2014)

18. Soltesz, S., Pötzl, H., Fiuczynski, M.E., Bavier, A.C., Peter-
son, L.L.: Container-based operating system virtualization:
a scalable, high-performance alternative to hypervisors.
In: Proceedings of the 2007 EuroSys Conference, Lisbon,
Portugal, March 21-23, 2007, pp. 275–287 (2007)

19. Peinl, R., Holzschuher, F., Pfitzer, F.: Docker cluster man-
agement for the cloud - survey results and own solution.
Journal of Grid Computing 14(2), 265–282 (2016)

20. Newman, S.: Building microservices - designing fine-
grained systems, 1st edn. O’Reilly (2015)

21. Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D.,
Tune, E., Wilkes, J.: Large-scale cluster management at
Google with Borg. In: Proceedings of the Tenth European
Conference on Computer Systems, EuroSys 2015, Bor-
deaux, France, April 21-24, 2015, pp. 18:1–18:17 (2015)

22. Bernstein, D.: Containers and cloud: from LXC to Docker
to Kubernetes. IEEE Cloud Comput. 1(3), 81–84 (2014)

23. Turnbull, J.: The Docker book: containerization is the new
virtualization, James Turnbull (2014)

24. Kakadia, D.: Apache Mesos Essentials. Packt Publishing
Ltd (2015)

25. Kreps, J., Narkhede, N., Rao, J., et al.: Kafka: a distributed
messaging system for log processing. In: Proceedings of the
NetDB, pp. 1–7 (2011)

26. Hunt, P., Konar, M., Junqueira, F.P., Reed, B.: Zookeeper:
wait-free coordination for internet-scale systems. In: 2010
USENIX Annual Technical Conference, Boston, MA,
USA, June 23-25, 2010 (2010)

27. Weyrich, M., Ebert, C.: Reference architectures for the
internet of things. IEEE Softw. 33(1), 112–116 (2016)

79

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


www.manaraa.com

A. Javed et al.

28. Ganchev, I., Ji, Z., O’Droma, M.: A generic IoT architec-
ture for smart cities. In: 25th IET Irish Signals Systems
Conference 2014 and 2014 China-Ireland International
Conference on Information and Communications Tech-
nologies (ISSC 2014/CIICT 2014), pp. 196–199 (2014)

29. Tracey, D., Sreenan, C.J.: A holistic architecture for the
Internet of Things, sensing services and big data. In: 13th
IEEE/ACM International Symposium on Cluster, Cloud,
and Grid Computing, CCGrid 2013, Delft, Netherlands,
May 13-16, 2013, pp. 546–553 (2013)

30. Premsankar, G., Francesco, M.D., Taleb, T.: Edge comput-
ing for the internet of things: a case study. IEEE IoT J. 5(2),
1275–1284 (2018)

31. Rodrigues, J., Marques, E.R.B., Lopes, L.M.B., Silva,
F.M.A.: Towards a middleware for mobile edge-cloud appli-
cations. In: Proceedings of the 2nd Workshop on Middle-
ware for Edge Clouds & Cloudlets, MECC@Middleware
2017, Las Vegas, NV, USA, December 11 - 15, 2017,
pp. 1:1–1:6, ACM (2017)

32. Kertesz, A., Pflanzner, T., Gyimothy, T.: A mobile IoT
device simulator for IoT-Fog-Cloud systems. J. Grid.
Comput. 17, 529–551 (2018)

33. Krco, S., Pokric, B., Carrez, F.: Designing IoT architec-
ture(S): a european perspective. In: IEEE World Forum
on Internet of Things, WF-Iot 2014, Seoul, South Korea,
March 6-8, 2014, pp. 79–84 (2014)

34. Kelaidonis, D., Rouskas, A., Stavroulaki, V., Demestichas,
P., Vlacheas, P.: A federated edge cloud-IoT architecture.
In: 2016 European Conference on Networks and Commu-
nications (EuCNC), pp. 230–234. IEEE (2016)

35. Alam, M., Rufino, J., Ferreira, J., Ahmed, S.H., Shah, N.,
Chen, Y.: Orchestration of microservices for IoT using
docker and edge computing. IEEE Commun. Mag. 56(9),
118–123 (2018)

36. Munir, A., Kansakar, P., Khan, S.U.: IFCIOT: integrated
fog cloud IoT: a novel architectural paradigm for the future
Internet of Things. IEEE Consum. Electron. Mag. 6(3),
74–82 (2017)

37. Sarkar, C., Nambi, S.N.A.U., Prasad, R.V., Biswas, A.R.,
Neisse, R., Baldini, G.: DIAT: A scalable distributed archi-
tecture for IoT. IEEE IoT J. 2(3), 230–239 (2015)

38. Cheng, B., Papageorgiou, A., Cirillo, F., Kovacs, E.:
Geelytics: Geo-distributed edge analytics for large scale
IoT systems based on dynamic topology. In: 2nd IEEE
World Forum on Internet of Things, WF-Iot 2015, Milan,
Italy, December 14-16, 2015, pp. 565–570 (2015)

39. Chang, H., Hari, A., Mukherjee, S., Lakshman, T.V.: Bring-
ing the cloud to the edge. In: 2014 Proceedings IEEE
INFOCOM Workshops, Toronto, ON, Canada, April 27 -
May 2, 2014, pp. 346–351 (2014)

40. Elias, A.R., Golubovic, N., Krintz, C., Wolski, R.: Where’s
the bear?: automating wildlife image processing using IoT
and edge cloud systems. In: Proceedings of the Second
International Conference on Internet-of-Things Design and
Implementation, IoTDI 2017, Pittsburgh, PA, USA, April
18-21, 2017, pp. 247–258 (2017)

41. Ramprasad, B., McArthur, J., Fokaefs, M., Barna, C.,
Damm, M., Litoiu, M.: Leveraging existing sensor net-
works as IoT devices for smart buildings. In: 4th IEEE
World Forum on Internet of Things, WF-Iot 2018, Singa-
pore, February 5-8, 2018, pp. 452–457 (2018)

42. Tai, S., Rouvellou, I.: Strategies for integrating messaging
and distributed object transactions. In: Middleware 2000,
IFIP/ACM International Conference on Distributed Sys-
tems Platforms, New York, NY, USA, April 4-7, 2000, Pro-
ceedings, vol. 1795 of Lecture Notes in Computer Science,
pp. 308–330. Springer (2000)

43. Rimal, B.P., Jukan, A., Katsaros, D., Goeleven, Y.: Archi-
tectural requirements for cloud computing systems: an
enterprise cloud approach. J. Grid Comput. 9(1), 3–26
(2011)

44. Kubler, S., Främling, K., Derigent, W.: P2P Data synchro-
nization for product lifecycle management. Comput. Ind.
66, 82–98 (2015)

45. Lukša, M.: Kubernetes in action. Manning Publications
Company (2018)

Publisher’s Note Springer Nature remains neutral with
regard to jurisdictional claims in published maps and institu-
tional affiliations.

80



www.manaraa.com

Reproduced with permission of copyright owner. Further reproduction
prohibited without permission.


	IoTEF: A Federated Edge-Cloud Architecture for Fault-Tolerant IoT Applications
	Abstract
	Introduction
	The Contributions of this Paper are Threefold:

	Background: Concepts and Related Work
	Theoretical Concepts
	IoT Architectures and Edge-Cloud Distributed Frameworks

	The IoTEF Architecture
	Application Isolation Layer
	Data Transport Layer
	Distributed OS Layer
	Unified Federated Management Layer

	Case Study: Smart Buildings
	Use Case Implementation with IoTEF
	Data Sensors for Smart Buildings

	Performance Evaluation and Discussions
	Performance in Terms of Latency
	Fault Tolerance Assessment

	Conclusion
	Summary and Implications
	Limitations and Future Work

	Acknowledgements
	Funding Information
	Open Access
	References
	Publisher's Note


